

Notification Date: May 9, 2023 Effective Date: June 1, 2023

Platelet Storage Pool Deficiency Gene Panel, Next-Generation Sequencing, Varies

Test ID: GNSPD

Genetics Information:

This test utilizes next-generation sequencing to detect single nucleotide and copy number variants in 24 genes associated with a variety of hereditary platelet storage pool deficiency disorders: ABCC4, AP3B1, AP3D1, BLOC1S3, BLOC1S5, BLOC1S6, DTNBP1, FLI1, GFI1B, HPS1, HPS3, HPS4, HPS5, HPS6, LYST, NBEA, NBEAL2, ORAI1, PLAU, STIM1, STXBP2, VIPAS39, VPS33B, and WAS. See Method Description for additional details.

Identification of a disease-causing variant may assist with diagnosis, prognosis, clinical management, recurrence risk assessment, familial screening, and genetic counseling for a variety of hereditary platelet storage pool deficiency disorders.

Useful For:

Evaluating hereditary platelet storage pool deficiencies in patients with a personal or family history suggestive of a hereditary platelet storage pool deficiency

Diagnosing hereditary platelet storage pool deficiencies for patients in whom phenotypic testing is nondiagnostic, but there is a strong clinical suspicion of the hereditary platelet storage pool deficiency

Confirming a hereditary platelet storage pool deficiency diagnosis with the identification of a known or suspected disease-causing alteration in one or more of 24 genes associated with a variety of hereditary platelet storage pool deficiencies

Determining the disease-causing alterations within one or more of these 24 genes to delineate the underlying molecular defect in a patient with a laboratory diagnosis of a platelet storage pool deficiency

Identifying the causative alteration for genetic counseling purposes

Prognosis and risk assessment based on the genotype-phenotype correlations

Providing a prognosis in syndromic hereditary platelet storage pool deficiencies

Carrier testing for close family members of an individual with a hereditary platelet storage pool deficiency diagnosis

This test is not intended for prenatal diagnosis

Methodology:

Sequence Capture and Targeted Next-Generation Sequencing (NGS) followed by Polymerase Chain Reaction (PCR) and Sanger Sequencing

Reference Values:

An interpretive report will be provided.

Necessary Information:

Platelet Esoteric Testing Patient Information is required. Testing may proceed without the patient information, however, the information aids in providing a more thorough interpretation. Ordering providers are strongly encouraged to fill out the form and send with the specimen.

https://www.mayocliniclabs.com/-/media/it-mmfiles/Special%20Instructions/3/4/0/Platelet Esoteric Testing Patient Information

Specimen Requirements:

Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call 800-533-1710 for instructions for testing patients who have received a bone marrow transplant.

Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA)
Acceptable: Yellow top (ACD)
Specimen Volume: 3 mL
Collection Instructions:

1. Invert several times to mix blood.

2. Send whole blood specimen in original tube. Do not aliquot.

Specimen Stability Information: Ambient (preferred) 4 days/Refrigerated

Specimen Minimum Volume

Blood: 1 mL

Cautions:

Clinical Correlations:

- Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.
- If testing was performed because of a clinically significant family history, it is often useful to first test an affected family member. Detection of a reportable variant in an affected family member would allow for more informative testing of at-risk individuals.
- To discuss the availability of additional testing options or for assistance in the interpretation of these results, contact the Mayo Clinic Laboratories genetic counselors at 800-533-1710.

Technical Limitations:

Next-generation sequencing may not detect all types of genomic variants. In rare cases, false-negative
or false-positive results may occur. The depth of coverage may be variable for some target regions;
assay performance below the minimum acceptable criteria or for failed regions will be noted. Given

- these limitations, negative results do not rule out the diagnosis of a genetic disorder. If a specific clinical disorder is suspected, evaluation by alternative methods can be considered.
- There may be regions of genes that cannot be effectively evaluated by sequencing or deletion and duplication analysis as a result of technical limitations of the assay, including regions of homology, high guanine-cytosine (GC) content, and repetitive sequences. Confirmation of select reportable variants will be performed by alternate methodologies based on internal laboratory criteria.
- This test is validated to detect 95% of deletions up to 75 base pairs (bp) and insertions up to 47 bp.
 Deletions-insertions (delins) of 40 or more bp, including mobile element insertions, may be less reliably detected than smaller delins.

Deletion/Duplication Analysis:

- This analysis targets single and multi-exon deletions/duplications; however, in some instances, single
 exon resolution cannot be achieved due to isolated reduction in sequence coverage or inherent
 genomic complexity. Balanced structural rearrangements (such as translocations and inversions) may
 not be detected.
- This test is not designed to detect low levels of mosaicism or differentiate between somatic and germline variants. If there is a possibility that any detected variant is somatic, additional testing may be necessary to clarify the significance of results.
- For detailed information regarding gene specific performance and technical limitations, see Method Description or contact a laboratory genetic counselor.
- If the patient has had an allogeneic hematopoietic stem cell transplant or a recent blood transfusion, results may be inaccurate due to the presence of donor DNA. Call Mayo Clinic Laboratories for instructions for testing patients who have received a bone marrow transplant.

Reclassification of Variants:

Currently, it is not standard practice for the laboratory to systematically review previously classified
variants on a regular basis. The laboratory encourages healthcare providers to contact the laboratory at
any time to learn how the classification of a particular variant may have changed over time. Due to
broadening genetic knowledge, it is possible that the laboratory may discover new information of
relevance to the patient. Should that occur, the laboratory may issue an amended report.

Variant Evaluation:

- Evaluation and categorization of variants are performed using published American College of Medical Genetics and Genomics and the Association for Molecular Pathology recommendations as a guideline.(7) Other gene-specific guidelines may also be considered. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance. Variants classified as benign or likely benign are not reported.
- Multiple in silico evaluation tools may be used to assist in the interpretation of these results. The
 accuracy of predictions made by in silico evaluation tools is highly dependent upon the data available
 for a given gene, and periodic updates to these tools may cause predictions to change over time.
 Results from in silico evaluation tools should be interpreted with caution and professional clinical
 judgment.
- Rarely, incidental or secondary findings may implicate another predisposition or presence of active disease. These findings will be carefully reviewed to determine whether they will be reported.

CPT Code:

81443

Day(s) Performed: Varies Report Available: 28 to 42 days

Questions

Contact Connie Penz, Laboratory Resource Coordinator at 800-533-1710.